MANUALE D'USO

Il programma parte lanciando l'eseguibile M-ELICA.exe

All'apertura compare le seguente scremata:

Calcolo scala elicoidale in c.a			-	×
Materiali Dati Geometrici Verifi	ca SLU Verifica SLE	Verifica PLINTO		
25/30 🚖	B4	50C 🕏	APRI	
Ec= 314/58 E	a= 21	00000		
n = 15 Ea	/Ec =	6.67		
Tensioni massime per S.L.U. in kg/ci	nq	1217000007		
sig_c_max= 141.6/ sig	1_a_max= 3913.04	134/82608/		
nin a massime per comb. Quasi P	ermanente in kg/cmq	c00 0		
sig_c_max- m2.50 sig	_a_max	000.0		
CARATTERISTICH				
BASE (B)	m	0.8	schema fondazione	
LUNGHEZZA (L)	m	1.0		
ALTEZZA (H)	m	0.5		
AMMORSAMENTO (D)	m	1.0		
DIAMETRO FERRI (12/14/16)	mm	16		
COPRIFERRO	cm	5	ΞΓ//	
		A	I	
CARATTERISTICH			alera Sala	
Angolo di attrito	(°)	29		
Coesione	(daN/cmq)	0	× \	
Peso di volune	(daN/mc)	1670		
CONFERMA				
-				

Il pulsante "APRI" consente di aprire un file contenente dati memorizzati in precedenza.

Il comando si limita a riempire tutte le caselle in input in modo da snellire il lavoro qualora occorre rieseguire il calcolo perché ci si accorge di volere cambiare qualcosa sui dati precedentemente inputati.

Qualora i materiali da utilizzare corrispondono a quelli già inseriti non occorre che vengono modificati.

La schermata sottostante "IN PRESENZA DI FONDAZIONE" va compilata solo in presenza di fondazione altrimenti non occorre intervenire. In presenza di fondazione tutte le caselle devono essere compilate.

NON INSERIRE MAI "," (VIRGOLE) AL POSTO DEL "." (PUNTO)

NOTA: IN ASSENA DI FONDAZIONE LE CASELLE "BASE" e "LUNGHEZZA" VANNO POSTE UGUALE A ZERO (0.0)

Cliccando suo pulsante successivo "Dati Geometrici" comparirà la sottostante schermata.

Aateriali Dati Ge	ometrici Verifica SLU	Verifica SLE Verifi	ca PLINTO					
				_Schema scala				
Calcolo s	cala elicoidale			1.	-			
NOME FILE	pino							
CALCOLISTA	Ing. Giuseppe Margani							
DITTA	Conugi Xxxxxx Xxxxxx	e Xxx Xxx (NON	INSERIRE VIRGOLE)					
UBCAZIONE	Roma - via Dott. Xxxxx	Xxx (NON INSE	RIRE VIRGOLE)					
DESCRIZIONE	Calcolo di una scala ad	elica (NON INSER	IRE VIRGOLE)					
				/ /				
Raggio interno (Ri)	cm	30			Hp		
Raggio esterno	(Re)	cm	110					
Altezza interpian	o (Hp)	cm	328	12	2			
Sviluppo rampa	in gradi (Sv)	•	320	N	- Te			
Numero pedate	(Np)	cm	20	N. N.	E-b-	<u></u>		
Peso Ringhiera	(Pr)	daN/ml	20		¥			
Spessore solett	a (s)	cm	15		E	5 <u> </u>		
Copriferro (c)		cm	3	Sv	Re	~		
Peso specif. rive	stim. scala	2700 daN/mc	2700		395-4			
Sp <mark>essore rivest</mark> .	pedate (Sp)	cm	3.0	Diametro ferri (12/14/16)	mm	14		
Spessore rivest.	alzata (Sa)	cm	2.0	N. ferri super.= N. ferri inf.	n.	8		
Carico Accidenta	ale rampa	400 daN/mq	400	Diametro staffe (8/10)	mm	8		
Considera azion	e sismica (1=si; 2=no)	n.	1	Passo staffe	cm	9		
Altezza pedata		cm		numero braccia staffe	n.	4		
Largh. interna gi	adino -(spigolo)	cm		Destinazione d'uso ambienti		Residenz.	•	
Largh. <mark>esterna g</mark>	radino -(spigolo)	cm		Condizioni ambientali:		Ordinarie	\$	
	STANDA	OPENDYE		CALCOLA SCALA		CALVA.		

Occorre inserire tutti i dati richiesti, non lasciare caselle vuote e non utilizzare virgole.

Trattandosi di sezione rettangolare l'armatura viene considerata simmetrica per cui il numero dei ferri inferiori è uguale a quello dei ferri superiori. Per passo staffe si considera la distanza fra le staffe in corrispondenza dell'asse baricentrico della sezione rettangolare, si consiglia di usare staffe a 4 braccia per una migliore cerchiatura del calcestruzzo.

La destinazione d'uso degli ambienti può essere: Residenziali, Uffici, Affollati, Commerciale.

Le condizioni ambientali possono essere: Ordinarie, Aggressive, molto aggressive.

Cliccando sul pulsante "**CALCOLO SCALA**" oltre ad eseguire tutti i calcoli viene calcolata l'alzata della scala, la larghezza minima e massima della pedata dei gradini, a questa larghezza va aggiunta la eventuale sporgenza del marmo della pedata. Qualora le dimensioni non ci soddisfano si modifica il numero delle pedate e si riesegue il calcolo.

Senza intervenire sui pulsanti "STAMPA", "CREA DXF" e "SALVA" si passa alla schermata successiva

Cliccando sul pulsante "Verifica SLU" viene visualizzata la sottostante schermata:

Materiali Dati Geometrici Verifica SLU Verifica SLE Verifica PLINTO		
TAGLIO VERIFICA AGLI SLU		
Trattandosi di strutture sottili al fine di assicurare una buona cerchiatura dei	l calcestruzzo si adittano stafe a 4 braccia calcolando nel contempo	
'armatura minima nel rispetto a quanto previsto al punto 4.1.6.1.1 del DM/2018.		
Verifica limitazione n. 1)- almento tre staffe a metro:	CONDIZIONE VERIFICATA	
Verifica limitazione n. 2)- Area staffe >1.5*B =800 mmq	CONDIZIONE VERIFICATA	
Verifica limitazione n. 3)- Interasse staffe <0.8*d =9.6 cm	CONDIZIONE VERIFICATA	
/md- Valore del taglio al di sotto del quale arm. minima [4.1.23]	9209 daN	
/rsd- Resistenza a taglio con rifer. alle staffe trasversali [4.1.27]	9441 daN	
/rcd- Resistenza a taglio con rifer. al calcestruzzo [4.1.28]	30456 daN	
Vrd = min (Vrsd, Vrcd) [4.1.29]	9441 daN	
Per I verifica deve risultare Vrd/Ved = 9441 / 1810.57 >1 [4.1.26]	SEZ. VERIF. A TAGLIO	
TORSIONE VERIFICA AGLI SLU		
Frcd- Resistenza a torsione con rifer. al calcestruzzo di progetto [4.1.35]	284919 daN	
[rsd- Resistenza a torsione con rifer, alle staffe trasversali [4.1.36]	1112838 daN	
Irld- Resistenza a torsione con rifer. all'armatura longitudinale [4.1.37]	749022 daN	
TRd = min (Trcd, Trsd, Trld) [4.1.34]		
Per la verifica deve risultare Trd/Ted = 28 <mark>4</mark> 919 / 10974 >1 [4.1.34]	SEZ. VERIF. A TORSIONE	
TAGLIO-TORSIONE VERIFICA AGLI SLU		
Deve risultare: Ted/Trcd + Ved/Vrcd = 284919 / 10974 = 0.098 <1	VERIFICATA A TAGLIO-TORSIONE	
PRESSOFLESSIONE DEVIATA VERIFICA AGLI SLU		
α - Data da: Ned/Nrcd	1	
Ined- Momento sollecitante	19 daN*m	
/bed- Momento sollecitante	50 daN*m	
Inrd- Momento resistente	3502 daN*m	
/brd- Momento resistente	8926 daN*m	
Per la verifica deve risultare (Mned/Mnrd)^q + (Mhed/Mhrd)^q = 0.011 <1 [4.1.19]	SEZ VERIE PRESSOELESSIONE	

In questa schermata compaiono i risultati delle verifiche agli SLU secondo la normativa vigente.

Qualora i margini di sicurezza ci soddisfano si passa alla schermata successiva, altrimenti si va alla schermata precedente si modificano i dati che interessano e si riesegue il calcolo.

Ritornando su "Verifica SLU" si controllano i nuovi risultati.

Cliccando su "**Verifica SLE**" vengono visualizzati i risultati delle verifiche agli SLE, come per la finestra precedente, se i risultati non ci soddisfano si torna si "**Dati Geometrici**", si modificano i dati voluti, si riesegue il calcolo e si torna a visualizzare i risultati di calcolo.

Materiali Dati Geometrici Verifica SLU Verifica SLE Verific	a PLINTO				
Ver. a Pressoflessione per Comb.rara M=(daN*cm)	41600	N=(daN)	1010		
Tens. massima nel calc. compresso (daN/cmq)	33.56				
Tens, massima acciaio copresso (daN/cmq)	185.73				
Tens. massima acciaio teso (daN/cmq)	693.19				
	SEZIONE VERIFICATA				
Ver. a Tensoflessione per Comb. Frequente M=(daN*cm)	-34000	N=(daN*cm)	-824		
Tens. massima nel calc. compresso (daN/cmq)	-17.20				
Tens. massima acciaio copresso (daN/cmq)	-31.33				
Tens. massima acciaio teso (daN/cmq)	434.20				
	SEZIONE VERIFICATA				
Verifica a Fessurazione per Comb. Frequente					
Distanza fra fessure	12.9800				
Ampiezza delle fessure	0.0020				
Tipo di ambiente	Ordinaria /e ssive				
	VERIFICA A FESSURAZIONE SODDISFATTA				
Ver. a Tensoflessione per Quasi Permanente M=(daN*cm)	-30900	N=(daN)	-750		
Tens. massima nel calc. compresso (daN/cmq)	-18.60				
Tens. massima acciaio copresso (daN/cmq)	9.16				
Tens, massima acciaio teso (daN/cmq)	415.24				
	SEZIONE VERIFICATA				
Verifica a Fessurazione per Comb. quasi permanente					
Distanza fra fessure	14.3500				
Ampiezza delle fessure	0.0020				
Tipo di ambiente	Ordinaria /e ssive				
	VERIFICA A FESSURAZIONE SODDISFATTA				

La verifica a Pressoflessione per combinazione rara viene eseguita considerando le caratteristiche di sollecitazione della sezione di piede della scala ad elica.

Le rimanenti verifiche vengono eseguite considerando le caratteristiche di sollecitazione della sezione di testa della scala ad elica.

Cliccando su "Verifica PLINTO" compaiano i risultati delle verifiche del plinto. In assenza di plinto,

Dopo avere eseguito i calcoli, tornando nella schermata **"Dati Geometrici"** è POSSIBILE, CON IL PULSANTE **"SALVA DATI"** MEMORIZZARE I DATI INPUT INSERITI NELLE VARIE CASELLE.

Cliccando sul pulsante "STAMPA" viene creato un file di stampa in html e successivamente stampato utilizzando una stampante pdf.

Cliccando sul pulsante "CREA DXF" viene creato un file dxf modificabile secondo le proprie esigenze o/e integrarlo se si ritiene utile con il file di progetto redatto dal progettista.

Si fa rilevare che il programma non memorizza il calcolo, il quale viene eseguito per ogni **TAB** che viene aperto. Per cui con il pulsante **"APRI**" vengono riempite tutte le celle contenenti i dati in input. Per cui, una volta riempite le celle occorre rieseguire il calcolo e scorrere tutti i **TAB**.

Il programma, è stato sviluppato per essere utilizzato all'interno dello studio, lo stesso è stato messo in vendita perché richiesto da colleghi. Particolare attenzione è stata posta al file di stampa redatto in modo da essere facilmente controllabile.

Buon lavoro !!!

MARGANI S.T.

